19 research outputs found

    Los libros sobre las drogas americanas en la Biblioteca Histórica de la Farmacia Suiza

    Get PDF
    Institute houses the Historical Library of the Swiss Pharmacy, founded in 2008, for the History of Medicine of the University of Berne provides an impressive collection of more than 6000 works. Among them are some books that deal with South American drugs. Besides the famous works by Nicolás Monardes and their translations, there are also a corpus of books representing the European pharmacognosy by the end of the 19th and the beginning of the 20th century. This paper is dedicated to the transfer of scientific knowledge reflected by the works in the Helvetic historical library.Fundada en el año 2008, la Biblioteca Histórica de la Farmacia Suiza, situada en el instituto de Historia de la Medicina de la Universidad de Berna, tiene un fondo de más de 6000 obras. Entre ellas se encuentran algunos libros que se dedican a las drogas sudamericanas. Aparte de las obras de Nicolás Monardes, también existen otras de la farmacognosia europea de finales del siglo XIX y principios del XX. Este trabajo ilustra la importancia de la transferencia de conocimientos usando la Biblioteca Histórica helvética como ejemplo

    The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism.

    Get PDF
    International audienceAlthough multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions

    Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.

    Get PDF
    International audienceRare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation

    Circulação e produção de saberes e práticas científicas na América meridional no século XVIII: uma análise do manuscrito Materia medica misionera de Pedro Montenegro (1710) Circulation and production of knowledge and scientific practices in southern America in the eighteenth century: an analysis of Materia medica misionera, a manuscript by Pedro Montenegro (1710)

    No full text
    Analisa uma versão manuscrita de 1790, do livro escrito originalmente em 1710 pelo jesuíta Pedro Montenegro, Materia medica misionera. Além da persistência de saberes mágico-religiosos e dos exóticos ingredientes para as receitas, encontram-se na obra a inconfundível presença das concepções hipocráticas e galênicas e o crescente empirismo que marca as transformações científicas do século XVIII. Sua análise permite, ainda, a reflexão sobre difusão, circulação e produção de conhecimentos farmacológicos e médicos na primeira metade do século XVIII, no âmbito das reduções e dos colégios instalados na região Província Jesuítica do Paraguai, na América meridional.<br>The article analyzes a 1790 manuscript copy of Materia medica misionera, a book written in 1710 by a Jesuit, Pedro Montenegro. Alongside knowledge of a magical or religious nature, and exotic ingredients for the recipes, this work also contains the unmistakable presence of Hippocratic and Galenic conceptions and a growing empiricism, characteristic of the scientific transformations seen in the eighteenth century. The analysis of this work also prompts reflections about the diffusion, circulation and production of pharmacological and medical knowledge in the first half of the eighteenth century within the missions and colleges installed in the area that was the Jesuit Province of Paraguay, southern America

    Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia

    No full text
    International audienceBackground: Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).Methods: We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).Results: We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10-6). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.Conclusions: This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4

    Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia

    Get PDF
    International audienceBackground: Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).Methods: We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).Results: We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10-6). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.Conclusions: This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4
    corecore